
Process Data Connection Channels in uLan Network for Home

Automation and Other Distributed Applications

Pavel Ṕı̌sa1,2

pisa@cmp.felk.cvut.cz

Petr Smoĺık1,3

petr@smoliku.cz

Frantǐsek Vacek1

fanda.vacek@volny.cz

Martin Boháček1

bohacma8@fel.cvut.cz

Jan Štefan1

honza.stefan@gmail.com

Pavel Němeček1

pavel.nemecek1@gmail.com

1 Czech Technical University in Prague, Department of Control Engineering

Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic

2 PiKRON s.r.o.

Kaňkovského 1235, 182 00 Praha 8, Czech Republic

3 AGROSOFT Tábor s.r.o.

Harantova 2213, 390 02 Tábor, Czech Republic

Abstract

The uLan protocol is the multi-master communication protocol aimed on small RS-485 control net-
works. It provides deterministic media access arbitration and it is open in design from its origin. An
open-source implementation of the protocol has already been available for many years. The article fo-
cuses on its adaptation for use in distributed home appliances (switches, lights and HVAC components
interconnection and control). For resource restricted control nodes, it was a challenging task to imple-
ment a flexible and persistent configuration of data and events direct routing between distributed nodes
without need for permanent operation of commanding master. Because devices do not have resources
to mutually examine their often large objects/properties dictionaries, the mechanism to map properties
values into process data messages slots has been implemented. The message slots act as (virtual) wires
which are setup by configuration tools running on PC which has enough resources to build and visualize
full objects/properties model by examining of connected devices. Examples of developed devices using
developed concept are presented at the end of the article together with tools available to help with fast
prototyping of new devices and their testing in PC environment. The compilation of embedded devices
code as native Linux binaries is quite straightforward because uLAN driver implementation is portable
and provides same API when compiled for system-less nodes, GNU/Linux or Windows operating system
environment.

1



1 Introduction

There is a need for a cheap, two wires bus commu-
nication between resource constrained MCU based
node in many projects and application areas. Many
standards exist but most of them require a special
MAC hardware to be integrated onto MCU or at-
tached as an additional communication chip. Many
technologies have the disadvantage of being propri-
etary or at least controlled by (sometimes secretly
held) patents, even those declared as public stan-
dards. The described solution is based on a different
approach. It is targetted to standard UART hard-
ware (with multi-drop or stick parity bit support)
available on most MCUs and PC serial port inter-
faces and it has been developed as an open protocol
from its beginning.

The article is divided to main parts. The first one
describes protocol basic ideas leading to uLAN pro-
tocol design and implementation. Description starts
from low level frame protocol and describes uLAN
Object Interface (uLOI) higher level layer with a
brief application example.

The second part focuses on process data ex-
change based on device properties/variables values
mapping into communication channels distributed in
publisher-subscriber manner.

2 uLAN Protocol

Origin and Initial Target Applications

The protocol design has been motivated by the need
of control and data acquisition networking suitable
for next generation of High Pressure Liquid Chro-
matography (HPLC) instruments sets designed by
yet future PiKRON company forming group in 1992.
The HPLC chromatography instruments do not re-
quire so fast command/data exchange for basic se-
tups, but there are many parameters which have to
be setup and should be monitored. The data types
range from simple one scalar variable setup (wave-
length, flow rate) to gradient time program and de-
tector data stream (one float at 25Hz in our case).
There should be no loss of sampled data but grouping
into longer packets is possible (group of 32 samples
at the time is used in our case). The requirement
has the ability to send some synchronization com-
mands between instruments without latency added
by data resending or even polling cycle controlled
by a single master (PC). Because the development
of new/different instruments and components to the
modular system was expected, the protocol higher

level layers need to support examination of instru-
ment type and available properties/variables.

uLAN Protocol Overview

The initial design of instruments control electronics
has been restricted to Intel-8051 based controllers
due to its availability and price. These devices pro-
vide only single UART hardware for communication
and their computational power is quite low. But they
offer multi-drop (9-bit per character) feature which
allows to suppress the need to process these received
data characters (address bit clear / bit 8 = 0) which
are not a part of message targeted to given instru-
ment/network node (module in uLAN terminology).
uLAN defines character values 0 · · · 0x64 with ad-
dress bit set to address target module but only up to
64 masters are considered by media arbitration de-
scribed later. The value 0 works as the broadcast ad-
dress. Values from 0x75 · · · 0x7F range have control
and data delimiters role. Values above 0x80 are used
to release the bus by master after it finishes its mas-
tering role in one message(s) exchange session. The
whole range above 0x80 is used for bus release to en-
code releasing node/module address which allows to
enhance fairness of communication channel capacity
distribution between nodes. Due to standard UART
behavior and need to synchronize on character ba-
sis, whole time to transfer character includes start
and stop bit in addition to the address indication
bit. The whole character transfer takes 11 bit times
in uLAN case.

As a physical layer, RS-485 signal levels, wiring
and transceivers have been selected. Because multi-
master operation has been required (as stated above)
some mechanism of media access control/arbitration
has to be defined. The one solution is to use token
passing (Profibus, BACnet MS/TP). But it requires
to keep and update nodes lists in each communica-
tion node, initial single token selection and its regen-
eration after node failure is quite complex. RS-486
signalling does allow reliable collision detection on
the wire when transceiver is switched to Tx direction.
Switching between Tx and Rx direction and link level
stabilization is much slower than available data rates
as well. However simulation of dominant/recessive
levels is possible by switching between Tx logic zero
level and Rx direction when bus termination with
quiet level bias to logic one is used.

uLAN deterministic distributed media arbitra-
tion has been partially inspired by Philip’s I2C de-
sign. But to allow full speed data rates during mes-
sage data phase and because UART hardware allows
only control of transceiver Tx/Rx direction (in most

2



cases assisted by CPU code in ISR) only on whole
character time granularity, the arbitration is based
on switching between Tx zero and Rx for whole char-
acter time (sometimes implemented by break charac-
ter send). Not like in I2C case, the arbitration needs
to finish before target address and data are sent in
transceiver fully driven Tx mode. The arbitration
sequence is based on self node/module address to
ensure unique dominant/recessive sequence for each
node.

uLAN is targetted to control applications which
require data receiption acknowledgement and com-
munication exchanges can be simplified by a direct
reply by addressed device during a single arbitra-
tion cycle. Direct reply frame follows directly after
initial frame end without media arbitration. Mas-
ter releases the bus after last frame belonging to the
given session. This is technique used in many other
standards but the advantage of uLan is mechanism
generic enough that there is no need to use special-
ized command format knowledge on the master’s side
of communication and required/expected single mes-
sage session frames sequence can be prepared and
passed to the driver on application level.

The single frame consists of destination address
(DAdr) with address bit set, source address (SAdr),
command (Com) followed by frame data characters.
The end of data is delimited by one of four control
characters describing the frame end kind. The sim-
ple frame consistency check byte (XorSum) follows.
The frame is directly acknowledged if frame end kind
specifies that. Then an direct reply frame can follow
if indicated by frame end as well.

SAdrDAdr

or

uL_Beg

Com 0 to MaxBlock

of data bytes

uL_End,

uL_Arq,

uL_Prq

or

uL_Aap

XorSum

Data frame format

FIGURE 1: uLan Frame Format

Media Arbitration and Its Cost

The media arbitration is divided into two phases.
The first phase is bus quiet time which given node
waits to ensure that bus is free (TarbW ). The dom-
inant level (break character) is sent after detection
of TarbW bus quiet time. If the other node character
is received, arbitration restarts from the beginning.
The second phase ensures a deterministic resolution
for the case when two or more nodes finish the first
phase in same time.

Because characters are sent and processed asyn-

chronously (UART is used) and some delays could be
caused by latencies in interrupt processing and some
delays are even required for safe transceiver Rx/Tx
switching without spikes the minimal time is speci-
fied as 4 character/byte transfer times Tchr.

The first phase TarbW waiting time is not the
same for all nodes to ensure some distribution of the
channel capacity between multiple nodes. The wait
time value is counted as

TarbW = ((LAdr − Adr − 1)mod 16 + 4) · Tchr (1)

where LAdr is node address of the last node
which has won arbitration and now releases the bus,
Adr is the address of given node which prepares for
bus use and Tchr is time to transfer one character.
This setup ensures strict cycling of media access pri-
ority between nodes with messages prepared in Tx
queue when only addresses up to 16 are assigned to
nodes. If more nodes are used, the cycling between
aliasing nodes is not ensured on deterministic basis
but at least helps with some stochastic distribution.

The second phase ensures that node with lower
own address wins arbitration when two or more
nodes finish the first phase at the same time. The
arbitration is based on sending next three dominant
level break characters separated from initial one by
precomputed time intervals Tarb,0, Tarb,1 and Tarb,2

Tarb,i = ((Adr shr(2 · i))mod 4 + 1) · Tchr (2)

If the activity from other node is detected during
inactive interval time, the node abandons arbitra-
tion and restarts from the first phase. Direct binary
coding and sending of own address as sequence of
dominant recessive character intervals have not been
selected because precise timing would be a problem
through ISR responses. The addition of one dom-
inant start bit and recessive stop bit around each
arbitration bit would result in even longer phase two
sequence (3 · Tchr · 8 = 24 · Tchr) length.

Bus request and release

LAdr delay

(LAdr-Adr-1)

mod 16 + 4

first

connect

mark

delay

Adr

+1

delay

and 3 +1and 3

delay

(Adr shr 2) (Adr shr 4)

and 3 +1

release

with DAdr of

first frame

transfer of data

frames beginning of bus by

LAdr=Adr

or 80h

FIGURE 2: uLan Media Access Arbitra-

tion

The designed deterministic distributed media ar-
bitration poses quite significant cost and consumes
important part of communication channel capacity.
The 11 bit times Tb are required to transfer single
character Tchr = 11 · Tb.

The TarbAll time of whole arbitration sequence
(TarbW + 1 + Tarb,0 + 1 + Tarb,1 + 1 + Tarb,2 + 1) is

3



bounded by next ranges

TarbAll ∈ 〈4 + 3 · 2, 20 + 3 · 5〉 · 11 · Tb (3)

TarbAll ∈ 〈10, 20 + 35〉 · 11 · Tb (4)

The whole time of one message arbitration cycle
consisting of single frame and reception acknowledge-
ment represents time interval TarbAll + (3 + ld + 2 +
4 + 1) · 11 · Tb where ld is number of data bytes. If
network with only 10 nodes with addresses 1 · · · 11
is considered, the arbitration overhead is much lower
due to shorter times of the second phase for modes
assigned by lower addresses and because maximal
length of the first phase applies only in case when
same node requests bus repeatedly (see equation 1).
The average message transfer time is more favorable
for this case, if full Tx saturation from all nodes is
supposed. The first phase time is 9 × 5 · 11Tb and
1 × 13 · 11Tb for this case. The second phase from 2
contributions evaluates to 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 11
character times. The average arbitration time Tarb

settles on (9.6 + 5.8) ·11 ·Tb and whole message time
is (ld + 25.4) · 11 · Tb. In case of quite common (for
our HPLC applications) message length of 256B and
communication speed of 19200Bd it takes 1.6122 s to
send 10 messages (one from each station) and over-
head caused by arbitration and other control charac-
ters represents 10%. If the whole encoding schema is
compared to synchronous communication which does
not need any address, start and stop bits, the over-
head causes 50%. But even synchronous communi-
cation requires some bit-stuffing in real applications
protocols and some media access control. On the
other hand, if short messages of 8 bytes each are con-
sidered then uLAN protocol makes up much higher
overhead about 300% (550% if counted on bit level).

The uLAN protocol compared to CAN can offer
in case of dedicated or FPGA hardware solution up
to 10 times higher transfer rates for bus of the same
physical length because arbitration (requiring propa-
gation of dominant/recessive level to whole link and
back) is running with 11 times slower timing than
actual data bytes. Other advantage is that during
data transfer full active push/pull transceiver mode
is used which provides better noise immunity and
works well even if only single twisted pair of wires
is used. CAN typically does not work well with-
out ground interconnection. When compared to to-
ken passing networks, uLAN has much simpler (ba-
sically none) master node connection to the network
and minimal delays are caused by node failure or
switched off. The significant disadvantage of very
high overhead for small messages can be adjusted by
building higher level protocol in the way that mul-
tiple variables/properties transfers are grouped into

single message.

Higher Level Layers

There are multiple higher level services built above
low level uLAN messages and frames protocol de-
scribed earlier.

Network Control Messages (uLNCS) the com-
mands from this group allow to check and
change module/node assigned network address,
check its identification and production serial
number

Dynamic Address Assignment (uLDY) the
mechanism to unveil newly attached nodes
from new serial product number appearance,
assign them free network address and detect
node disconnection or switching off

uLan Object Interface Layer (uLOI) the
mechanism to retrieve list of device supported
readable and writeable variables/properties,
their names and data types

Only very short description of use of the last
mechanism fits in this article.

3 uLan Object Interface Layer

The uLOI defines the system how to serialize ob-
jects (properties/variables) identification and their
values in transferred messages. The service works
with asynchronous reply as further master transfer
after request sends service/command number to spe-
cific uLOI node/module. Multiple queries for ob-
jects values and/or their description can be serial-
ized in a single message. The limitation is given
only by the maximal length of a request and ex-
pected reply messages which is at least 1000B for ac-
tual products. The controlling application can build
model representing connected devices and then use
this model to access data and control attached mod-
ules/instruments. The objects serialization and iden-
tification minimizes amount of metadata to minimize
communication overhead. Each object in module is
identified only by 16 bit Object Identification Num-
ber. No type, name nor data length for plain types is
included in regular transfers. All these information
has to be obtained by controlling application/system
in advance through predefined OIDs for this purpose.
The significant advantage of the protocol and cur-
rent uLan driver implementation is that mesage can

4



be read from incoming queue by parts and OIDs are
directly interpreted and the reply message is build
again in “driver space” buffers. The second advan-
tage is that reply allows to identify which objects
data it contains. This allows to have more data re-
quest on the fly from different controlling nodes or
applications.

The example of system utilizing many of uLAN
services is CHROMuLAN HPLC control system de-
veloped by Jindrich Jindrich and PiKRON Ltd.

uLan
driver

RS485
buffer

UART
chip

UART
RS485

UART
RS485

uLan
API and
MCU

support
libraries

uLan
API and
MCU

support
libraries

interface
object
uLan

interface
object
uLanmodel

Dev 2
model
Dev 1

Interface
User

Graphic

Local

and UI
keyboard
display

cation
appli−

function
Device

Operating System
Linux/Windows

DOS

Control Computer
Hardware (PC)

Control System Device 1 Device 2

CHROMuLAN

uLan API

more
HW

uLan net. modelULD files
ULF, ULC

storage

(mem)
storage
Temp.

Persistent

Control logic
IFPS interpretter

User scripts
parameters and
acquired data

Object tree browser and handler
Object tree of branches, properties

and process variables

sensors
etc.

llers
Contro−

meters

variables and
device
para−

Process
over uLan objects

comunicating
and application
Device logic

Local display
keyboard, UI

and time program

FIGURE 3: uLOI in Devices and Corre-

sponding Model Build in CHROMuLAN Ap-

plication

Many other applications have been developed at
PiKRON company or by other uLAN adopters. I.e.
Agrosoft Tábor FASTOP and FASTOS systems for
automatic batch distribution of feed to pigs, cows
and their systems for cow milking data collection.
uLAN interconnect the feeding units with RF animal
identification with central database in these systems
for example.

4 Data Exchange in Home

Control Application

The multi-master capability of uLan, very low cost
interconnection with use of a phone line grade ca-
bles, free bus topology, non problematic interfacing
between many low cost microcontrollers and stable
drivers for PC operating systems are features which
speaks for spreading of uLan into other areas as well.
uLan is not intended for high speed communication
or hard real-time data exchange but these features

are not required for the most tasks of home automa-
tion systems. That is why use of uLan for heating
monitoring and control, lights switching and ring-
bells has been proposed by team preparing new home
automation project at the Department of Control
Engineering.

uLOI layer supports devices configuration and
their state monitoring by higher level systems. But
use of polling cycle by higher level system is sig-
nificant disadvantage for home automation. The
home appliances has to be equipped by system which
allows direct communication between nodes in re-
sponse to the incoming events. This is important
not only to short latencies caused by polling cycle
but even to allow system to provide at least basic
functionality even in the case of higher level control
system failure. It would be possible to use uLOI
messages for direct data writes or reads to/from one
appliance to objects located in other one. However,
this would require mutual knowledge of the structure
of appliances and require quite complex and memory
resource huge OIDs list and types retrieval or made
system inflexible by storing other device OIDs into
firmware in fixed form.

The generic system for building uLan Connection
Network (uLCN) for processing the data exchange
has been designed instead. This mechanism consists
of two main specifications. The first there is de-
fined new uLAN protocol level command/service for
process data exchange (UL CMD PDO). The mes-
sage of this type contains one or more blocks holding
data corresponding to individual virtual “wires” con-
nected between appliances. Each such wire is iden-
tified by its Connection ID (CID) and delivers data
or events of some type.

uLAN PDO Connection Channels

The subsystem is designed for direct pro-
cess data (PDO) exchange between devices
(nodes/instruments). Every data transfer is iden-
tified by connection ID (CID). Design allows to map
one or multiple uLOI dictionary objects (properties,
variables) as data source or destination for given
CID. The mapping is stored directly in devices. The
mechanism allows to transfer multiple CID identi-
fied data values in single message. Receiver identi-
fies data scope only by CID, no source address or
device internal uLOI OID assignment or meta-data
format is encoded in PDO messages or directly influ-
ence the processing. This allows to connect objects
with different OIDs, group multiple objects under

5



Res Lo Res Hi Ext len (el) Ext CID data len (dl) data CID ...

1 byte 1 byte 1 byte 0..el bytes 2 bytes LE 1 (2) byte dl bytes

Table 1: UL CMD PDO Message Structure

a single CID, use broadcast to distribute data into
multiple destination devices or even use more de-
vices as data source for same CID. When device
receives PDO message, it processes every CID iden-
tified data according to configured mapping. CIDs
and their respective data for which no mapping is
found are simply skipped. Only data types compati-
bility between mapped source and destination OIDs
is required and sometimes this requirement can be
even relaxed to some degree. If destination type is
shorter then source, remaining bytes are skipped,
counter case is illegal for actual implementation.
Predefined constant data can be sent in response to
event activation as well.

Command UL CMD PDO (0x50) is specified for
PDO messages. Message format starts with two
reserved bytes for future static extensions and one
byte follows, which can be used for dynamic PDO
messages header extensions in future. These bytes
should be sent as zero for current protocol version.
Each data block is preceded by its CID and data
length. Maximal individual data block length is 127
bytes for actual implementation and is encoded in
single byte. Format allows extension to two bytes in
future if needed.

Control of Data Mapping into Chan-

nels

All configuration/mapping of PDO data source and
processing of received PDO messages is done through
device objects dictionary (uLOI). Exchanged data
and meta-data stored in mapping tables have same
format as is used for uLOI layer properties/data ac-
cess.

The core component are ULOI PICO and
ULOI POCO mapping tables, both with same for-
mat structure. They are accessible as regular uLOI
arrays of four field structures. Each array entry spec-
ifies mapping between CID and object dictionary en-
tries. Simple one to one mappings are specified di-
rectly by entry by OID number. Complex mapping
can specify offset into block of meta-data byte array
instead of direct OID specification. This allows to
serialize multiple objects/OIDs data under one CID,
add execute command after CID data reception and
distribution into uLDOI objects etc. Another possi-
bility is to process the same received data by multiple

mappings for the same CID. The special form to em-
bed 3 bytes (OID + single byte) or 4 bytes (OID +
2 bytes) directly into ULOI PICO or ULOI POCO
mapping table entry is also supported.

Events to Process Messages Mapping

The ULOI PEV2C array specifies, which CID/CIDs
identified transfers should be initiated when given
event number is activated. One event can be speci-
fied multiple times to trigger multiple CID transfers.
The ULOI PEV2C array entry specifies event num-
ber to CID mapping and some flags to nail down CID
processing.

5 Example Applications

DAMIC Home Automation Compo-

nents

The concept of the uLAN PDO connection channels
is used in a components and appliances set which has
been developed at the Department of Control Engi-
neering to cover needs of heating, ventilation, air-
conditioning (HVAC), light control and other home
automation tasks:

FIGURE 4: uACT 2i2ct – uLan Actuator

and Temperature Sensor

6



FIGURE 5: uLTH 010 – uLan Room Ther-

mostat

uACT (010) an actuator and temperature sensor
available in more variants of output and input
channels count and power stages

uLMI (010) a device equipped by digital inputs to
sense doors and windows state with additional
temperature sensor

uLSW (010) not an only light wall switch which
allows to map four contacts (left, right x up,
down), their combinations and pres duration
and “double click” to different events

uDIM 010 a multiple channels dimming controller
for 8-230 VAC lights control

uLMO (010) a miniaturized variant of the actua-
tor controller

uLTH 010 a room temperature controller equipped
by local multi-setpoint week program and user
interface logic for program visualization and
editing

All above listed components can be combined to-
gether. The temperature controller uLTH can con-
trol a heater equipped by valve controlled by uACT
for example. The uLMI can be used to indicate open
window and this state can be routed to the uLTH to
switch of heating when inhibitant opens doors for
ventilation. The designed infrastructure is used in a
thermal recuperation and ventilation units (VECO)
as well.

One or more computers can be used to monitor
and visualize components states and setup parame-
ters and time programs over uLOI protocol and or
can participate in PDO uLCN based data exchange.

The uLAN uLOI, uLCN infrastructure is used on
PC hardware which runs Linux or Windows oper-
ating systems but even Linux equipped access-point
devices or PowerPC based boards are supported by
Linux builds of uLAN driver.

uLAN-Admin

uLAN-admin is a set of Qt library based components
which provide access to devices properties/variables
by means of uLOI protocol, allows devices scanning,
identification, monitoring and administration. The
core component is library ”libulproxy”. The model
of uLan devices and their OI variables is built by the
library in memory and creates abstraction to access
uLAN network components over JSON RPC 2.0 in-
terface. Thye library provides a routing of uLAN bus
communication through TCP sockets as well. An
utility library ”libulqttypes” take care about con-
version of OI variables values between uLAN bus
data format and Qt types. Its primary purpose is
to decode/encode byte arrays of uLAN communica-
tion to/from QVariant variables. uLAN-admin also
contains exemplary application ”browser” providing
overview of devices on bus, which is based on above
described libraries.

FIGURE 6: uLAN-admin – ”Browser” Ap-

plication Main Window

uLAN-genmod

uLAN GenMod is an application that allows to con-
nect a virtual devices to uLAN bus. Each device
is defined by two files. A graphical representation
of a virtual device is described by QML (Qt Model-
ing Language). uLAN description is defined in XDS
file (XML description), where are device’s name, ad-
dress, serial number and device’s object interface.
A whole house network and variables interconnec-
tion can be configured by uLAN-admin tool through
ULOI PICO and ULOI POCO tables, where is de-
fined what PDO messages and CIDs device receive

7



and send. The application allows save this network
configuration. The network configuration is transfer-
able to real devices. The virtual device can control
the real devices connected to uLAN bus and vice
versa.

FIGURE 7: uLAN-genmod – Application

Main Window with Two Devices

6 Conclusion

The uLAN protocol and surrounding infrastructure
have been used in many applications for years. They
include two generations of HPCL instruments sets
(third generation is in preparation now), more agri-
cultural control systems and componets, other se-
rious production grade and hobbyists projects (i.e.
HISC private house control network based on sole
uLOI which componets has been designed around the
year 2005).

uLAN uLCN/PDO design started in 2008 and its
actual version is complete and well tested. The ap-
proach is similar to CANopen dictionary and PDO
idea but it is more flexible and suitable for wider
size data types, generic arrays and inherits under-
laying uLOI layer flexibility. uLOI layer provides
network introspection capabilities much better than
many other standards offers. Yet the metadata over-
head is kept very small for data exchange after initial
device model retrieval phase.

The PDO mapping system has been tested on
the CTU developed components for home automa-
tion during the DAMIC project. The initial versions
of open-sourced management software utilizing Qt
library is being developed as well. uLan driver and
fully portable interface libraries allows to test even
GNU/Linux builds of components and their interac-
tion. The Qt based components builder and dictio-
nary sources generator is in development to help new-
comers to test capabilities and speed up new nodes
design.

The uLCN/PDO mapping extension and open-

ness of the project make it an excellent candidate for
smaller hobbyists home automation projects. The
minimal requirements for small nodes (only UART
with software parity control) allows to base such de-
signs on a cheap Cortex-M3 or even smaller MCUs.
The design of higher communication layers can be
utilized even in combination with different link tech-
nologies or can serve as an inspiration for other sim-
ilar projects at least.

uLan project is a live thanks to more companies’
and university members’ participation. The actual
version of the code used in multiple real sold prod-
ucts is available from uLAN project SourceForge GIT
repository and file releases archives.

References

[1] Jindřich, J., Ṕı̌sa, P.: CHROMuLAN

project [online], 2004–2011, Available:
http://sourceforge.net/projects/chromulan/.

[2] Ṕı̌sa, P., Smoĺık, P.: uLan Communication Pro-

tocol for Laboratory Instruments, Home Automa-

tion and Field Applications, In 15th International

Conference on Process Control 05, Bratislava,
2005. Slovak University of Technology. ISBN
ISBN 80-227-2235-9.

[3] Ṕı̌sa, P., Smoĺık, P.: uLan SF.net

project [online], 2004–2011, Available:
http://ulan.sourceforge.net/.

[4] Ṕı̌sa, P.: ulan Driver and Protocol Base

Documentation [online], 2004–2011, Available:
http://ulan.sourceforge.net/index.php?page=3.

[5] PiKRON s.r.o.: HPLC Systems Man-

uals and Products [online], 2011,
http://www.pikron.com/pages/-

products/hplc.html.

[6] Ṕı̌sa, P.: Mathematics and electrical processing

of liquid chromatography detector signal, Ph.D.
Thesis, Czech Technical University in Prague,
2010.

[7] Němeček, P., Čarek, L., Fiala, O., Burget, P.:
DAMIC – HVAC control system [application pro-
totype], 2009

[8] MIKROKLIMA s.r.o.: DAMIC prod-

ucts for MIDAM Control System [online],
2011, http://www.midam.cz/categories/-

DAMIC-inteligentni-dum.html.

[9] DCE MCU HW and SW Development Resources

Wiki – Rtime Server at DCE FEE CTU [online],
2011 http://rtime.felk.cvut.cz/hw/.

8


